MATH2048 Honours Linear Algebra II

Midterm Examination 2

Please show all your steps, unless otherwise stated. Answer all five questions.

1. Let $V=M_{2 \times 2}(\mathbb{R})$ and $T \in \mathcal{L}(V)$ is defined by

$$
T(A)=A+A^{T}
$$

Determine whether T is diagonalizable. Please explain your answers with details.
2. Let $V=P_{2}(\mathbb{R})$ and $T \in \mathcal{L}(V)$ is defined by

$$
T\left(a+b x+c x^{2}\right)=(-a-2 b+c)-\left(\frac{1}{2} c\right) x+(2 b+2 c) x^{2} .
$$

(a) Find a polynomial $g(t)$ of degree at most 2 such that $T^{3}=g(T)$. (Hint: CayleyHamilton Theorem.)
(b) Let $\mathbf{v}=-x+2 x^{2} \in V$ and W be the T-cyclic subspace of V generated by \mathbf{v}. Show that $T^{2}(\mathbf{v})=a_{0} \mathbf{v}+a_{1} T(\mathbf{v})$ for some $a_{0}, a_{1} \in \mathbb{R}$. What's $\operatorname{dim}(W)$? Find the characteristic polynomial of $\left.T\right|_{W}$, the restriction of T to W.
3. Let V be a vector space over \mathbb{C} with an ordered basis $\beta=\left\{\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{n-1}\right\}$. Define a linear operator $T: V \rightarrow V$ by:

$$
T\left(\mathbf{v}_{0}\right)=\mathbf{v}_{0}-\mathbf{v}_{n-1} \text { and } T\left(\mathbf{v}_{k}\right)=\mathbf{v}_{k}-\mathbf{v}_{k-1} \text { for } 1 \leq k \leq n-1 .
$$

Let $\omega_{k}=e^{i \frac{2 \pi k}{n}}=\cos \left(\frac{2 \pi k}{n}\right)+i \sin \left(\frac{2 \pi k}{n}\right)$ for any integer k (where $i=\sqrt{-1}$).
(a) Show that $\mathbf{u}_{k}=\sum_{j=0}^{n-1} \omega_{k}^{j} \mathbf{v}_{j}$ is an eigenvector of T for any integer k and show that T is diagonalizable. (Hint: You may use the fact that $\omega_{k}^{j}=e^{i \frac{i \pi k j}{n}}$ and $\omega_{k}^{n}=1$.)
(b) Now, consider the linear operator $U: V \rightarrow V$ defined by: $U\left(\mathbf{v}_{0}\right)=\mathbf{v}_{1}-$ $2 \mathbf{v}_{0}+\mathbf{v}_{n-1}, U\left(\mathbf{v}_{k}\right)=\mathbf{v}_{k-1}-2 \mathbf{v}_{k}+\mathbf{v}_{k+1}$ for $1 \leq k \leq n-2$ and $U\left(\mathbf{v}_{n-1}\right)=$ $\mathbf{v}_{n-2}-2 \mathbf{v}_{n-1}+\mathbf{v}_{0}$. Using (a), determine if there exists an ordered basis γ for V such that $[U]_{\gamma}$ is a real diagonal matrix. Please explain you answer with details.
4. Let F be a field and $V=F^{n}$ be a vector space over F. Let $\Phi: V^{*} \rightarrow F^{n}$ be defined by $\Phi(f)=\left(c_{1}, \ldots, c_{n}\right)$, where $f(\vec{x})=f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} c_{i} x_{i}$. Let $W=\{\vec{x}=$ $\left.\left(x_{1}, \ldots, x_{n}\right) \in V: \sum_{i=1}^{n} x_{i}=0\right\}$ be a subspace of V.
(a) Let $\vec{v}_{0}=(1,1, \ldots, 1) \in V$. Let $\eta: W^{*} \rightarrow V^{*}$ be a linear map between W^{*} and V^{*} such that $\eta(g)(\vec{x})=\left\{\begin{array}{ll}g(\vec{x}) & \vec{x} \in W \\ 0 & \vec{x} \in \operatorname{span}\left(\left\{\vec{v}_{0}\right\}\right)\end{array}\right.$. Show that η is well-defined. (That is, for each $g \in W^{*}, \eta(g) \in V^{*}$ is uniquely determined.)
(b) Show that $R(\Phi \circ \eta)=\left\{\left(c_{1}, \ldots, c_{n}\right) \in F^{n}: \sum_{i=1}^{n} c_{i}=0\right\}$.
5. Let V be a finite-dimensional vector space over \mathbb{R} with an ordered basis $\beta=\left\{\mathbf{v}_{i}\right\}_{i=1}^{n}$. Consider a linear transformation $\Phi: V \otimes V \rightarrow \mathcal{L}\left(V^{*}, V\right)$, which is defined by:

$$
\Phi\left(\mathbf{v}_{i} \otimes \mathbf{v}_{j}\right)(f)=f\left(\mathbf{v}_{i}\right) \mathbf{v}_{j} \text { for all } f \in V^{*} .
$$

(a) Prove that Φ is an isomorphism and $\left[\Phi\left(\mathbf{w}_{1} \otimes \mathbf{w}_{2}\right)\right]_{\beta^{*}}^{\beta}=\left(\left[\mathbf{w}_{2}\right]_{\beta}\right)\left(\left[\mathbf{w}_{1}\right]_{\beta}\right)^{T}$.
(b) Let $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right\}$ be a linearly independent subset of V and A be a $m \times m$ real matrix. Consider $G=\sum_{i=1}^{m} \sum_{j=1}^{m} A_{i j} \mathbf{w}_{i} \otimes \mathbf{w}_{j}$, where $A_{i j}$ is the i-th row j-th column entry of A. Find the rank of $\Phi(G)$.

END OF PAPER

